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Abstract Model ing  is a major component of contem- 
porary earth science, and regression analysis occupies a 
central position in the parameterization, calibration, and 
validation of geomorphic and hydrologic models. Although 
this methodology can be used in many ways, we are pri- 
marily concerned with the prediction of values for one 
variable from another variable. Examination of the litera- 
ture reveals considerable inconsistency in the presentation 
of the results of regression analysis and the occurrence of 
patterns in the scatter of data points about the regression 
line. Both circumstances confound utilization and evalua- 
tion of the models. Statisticians are well aware of various 
problems associated with the use of regression analysis and 
offer improved practices; often, however, their guidelines 
are not followed. After a review of the aforementioned 
circumstances and until standard criteria for model evalu- 
ation become established, we recommend, as a minimum, 
inclusion of scatter diagrams, the standard error of the 
estimate, and sample size in reporting the results of regres- 
sion analyses for most surface-process studies. 
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Introduction 

Relevant literature demonstrates that modeling has be- 
come a major component of contemporary earth science. 
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Foster (1988) remarked that physically based research 
models are important tools used by scientists and research 
managers to enlarge their understanding of runoff and 
erosion processes, to identify research needs, and to set 
research priorities. Further, he notes that within the last 
decade, runoff and erosion modeling has become used 
increasingly to deal with "real-world" applied problems. 
Haan (1988) observed that virtually all hydrologic design 
is based on the results of applying a hydrologic model. 

Knisel (1980) commented that the mathematical model- 
ing of the processes in erosion and sediment transport has 
increased significantly since the passage of the Clean Water 
Act, Public Law 92-500, in 1972. Renard and Meyer (1986) 
submitted that the United States Congress recognized the 
potential of models when it instructed the Office of Tech- 
nology Assessment to: (1) assess the nation's ability to use 
models efficiently and effectively in analyzing and solving 
water resource problems, and (2) provide recommenda- 
tions for improving the use of available technologies. 

However, modeling is not yet the panacea for solving 
all geomorphic and hydrologic problems. The American 
Society of Civil Engineers Task Committee on Evaluation 
Criteria for Watershed Models (ASCE 1990) identified 
three major limitations in the presentation of hydrologic 
models in today's literature: (1) developers typically do not 
provide statistical evaluation criteria to assist the user in 
determining how well the model reproduces the measured 
data or how well it compares to other models; (2) most 
models are not tested for a wide range of conditions, so the 
user cannot evaluate where and when the particular model 
should be applied and how different models work for differ- 
ent conditions; and (3) the models are usually not docu- 
mented sufficiently for a user to select parameters effec- 
tively, apply the model, and then evaluate the results. In 
addition, there are often inadequate data with which to 
compare simulations by various models. The ASCE Task 
Committee (ASCE 1990, p. 393) concluded that "currently, 
the evaluation of watershed models is a subjective busi- 
ness." Wagenet (1988) and Foster (1988) provided further 
discussion of limitations associated with various types of 
models. 
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Regression analysis is a statistical tool that plays a key 
role, both directly and indirectly, in a substantial propor- 
tion of earth science modeling. It is a versatile and powerful 
technique for predicting one entity from another and then 
comparing the predicted and measured values. In this re- 
port, we focus upon the use of regression analysis for 
prediction. Although criticized as an empirical method, 
Foster (1988) acknowledged that our lack of complete 
understanding (of physical processes) requires a degree of 
empiricism even in the most process-based model. 

As with any tool, regression analysis has the potential 
for abuse. In fact, regression or structural analyses are 
almost always, to some degree, inappropriate methods for 
earth science studies, usually as a consequence of the as- 
sumptions upon which they are predicated and also be- 
cause there is often no clear distinction between the depen- 
dent and independent variables. Diskin (1970) discussed 
problems associated with evaluating the parameters of 
linear regression models used for rainfall runoff model- 
ing. Mark and Church (1977) described conditions under 
which least-squares regression is properly utilized and cir- 
cumstances when structural analysis is a more appropriate 
alternative. Subsequently, Osterkamp and others (1978) 
provided guidelines for choosing between regression and 
structural analysis in geomorphic studies. Williams (1983) 
cautioned against the improper use of regression equations 
to estimate the independent variable, and Wagenet (1988, 
p. 7) commented that "the application of models beyond 
the experimental experience used in their development is 
in many respects an extrapolation exercise; the perils of 
ill-considered extrapolation are well-covered in many ele- 
mentary texts." Indeed, regression equations as utilized in 
the earth sciences are infrequently robust. 

Perusal of the contemporary geomorphic and hydro- 
logic literature reveals numerous examples of regression 
analyses, demonstrating that it is the single most widely 
used technique for defining presumed cause-and-effect re- 
lationships. This examination further reveals considerable 
inconsistency in the presentation of results from these anal- 
yses. Commonly, a graphic display includes the scatter of 
data upon which the regression is based. However, some- 
times only the derived regression line is provided, making 
it difficult to evaluate the utility of the model even across 
the range of values depicted on the axes. Commonly, the 
correlation coefficient (r) or coefficient of determination 
(r z) is provided from which one is apparently expected to 
infer error (or absence thereof) associated with predictions 
from the model. In addition, for data sets of any size, there 
are frequently patterns in the scatter of data points about 
the regression line; in other words, the data are in proxim- 
ity to the regression line through a part of the distribution, 
but scattered through another part of the distribution. This 
can occur despite the transformation of data. Each of these 
three situations--provision of the regression line alone, 
utilization of the correlation coefficient, and pattern in the 
distribution of data points about the regression line-- 
confound evaluation of the model by the reader and poten- 
tial user. 

It is the purpose of this paper to remind earth scientists 

of various possibilities for misuse of regression analysis and 
to offer recommendations for standard reporting practices 
based upon consideration of the three aforementioned sit- 
uations. The potential for improper use of regression tech- 
niques is well recognized by statisticians and many earth 
scientists, but sometimes overlooked by the occasional 
practitioner. Further, methods for handling problematic 
data are often more theoretical than practical, requiring 
knowledge about the data that is difficult to obtain or 
necessitating complex computations for which computer 
software may not be available. It is a thesis of this paper 
that scientific progress in the earth sciences can be placed 
upon a stronger statistical foundation through a complete 
presentation of the results from regression analysis. 

Graphic display 

There seem to be few cases that warrant the omission of 
scatter diagrams from the presentation of regression re- 
sults. The regression line alone connotes a functional rela- 
tion between independent and dependent variables. The 
real world is rarely that simple, even when measured accu- 
rately. Furthermore, the line alone deprives the reader and 
potential user of the opportunity to judge the value of the 
model through the range of data of particular interest. 
Lastly, outliers that produce large residuals are frequently 
"research hypotheses generators," as we search for their 
c a u s e .  

Errors in prediction 

Regression is generally used for statistical prediction, 
whether predicting the dependent variable from the inde- 
pendent variable or predicting the errors that may be 
expected when utilizing a model. Obviously, accuracy is 
one important component in evaluating and choosing a 
particular model (Renard and Meyer 1986; Woolhiser and 
Brakensiek 1982; Dawdy and Lichty 1968; among others). 
There is a substantial body of literature concerning this 
topic under keywords such as "error analysis," "uncer- 
tainty analysis," and "influence analysis." Hardison (1971) 
provided a valuable comparison of the standard error 
of prediction and the standard error of the estimate for 
estimation of streamflow properties from drainage-basin 
characteristics. Troutman (1985a, b) presented an excellent 
treatise on errors associated with the estimation of run- 
off from rainfall. Haan (1988) discussed the subject of 
"uncertainty" in hydrologic modeling, and Gilroy (1991) 
described "uncertainty" in estimates of stream sediment 
loads. Tasker and Stedinger (1989) briefly discussed the 
"influence" or "leverage" that individual data points can 
exert on the prediction of streamflow properties from phys- 
iographic basin characteristics. 

Various statistics are used to express the probable accu- 



racy or error associated with a particular model. Perhaps 
the most commonly utilized are the correlation coefficient 
(r) and the coefficient of determination (rZ). The former is 
intended to express the strength of the relation between 
two variables without regard to their assumed dependence 
or independence. The latter expresses the percentage of the 
variance in the dependent variable that is "explained" by 
the independent variable, or, put otherwise, the coefficient 
of determination indicates the improvement in prediction 
that might be expected by using the independent variable 
for that purpose rather than merely the mean of the depen- 
dent variable. Neither statistic, however, is designed to 
assess the probable errors in prediction that are likely to 
result from the utilization of a particular regression model. 

The standard error of the estimate (SEyx) is used to 
indicate, with a given level of confidence, the range within 
which a predicted value should lie. It is, in practice, equiva- 
lent to the standard deviation of the residuals, except that 
SEyx relates to an infinite sampling distribution while the 
standard deviation of the residuals relates to a finite distri- 
bution of actual observations (Hammond and McCullagh 
1974). Of course, the standard error of the estimate, corre- 
lation coefficient, and coefficient of determination are re- 
lated; as the standard error of the estimate increases, the 
correlation coefficient and coefficient of determination de- 
crease. In addition, the standard error of the estimate is a 
well-known statistic and most regression analysis com- 
puter programs provide the statistic. 

Haan (1988) acknowledged that there is no widely 
accepted criterion on which to base the evaluation of a 
model. As something of an expedient compromise, we 
suggest that the standard error of the estimate should be 
given as part of the regression analysis, in addition to the 
correlation coefficient or the coefficient of determination. 
Furthermore, the sample size for a particular analysis 
should be stated explicitly so that degrees of freedom for 
tests of significance can be readily ascertained. 

Dispersion about regression line 

Although several potential and actual problems inherent 
in the use of regression are treated in the literature, there 
is little discussion regarding patterns in the scatter of data 
about the regression line. Patterns are a likely consequence 
of an uneven distribution of data in a particular set. A 
result can be significant differences in the variance of the 
dependent variable through the range of values for the 
independent variable (referred to as "heteroscedasticity" of 
the data); these differences may persist despite data trans- 
formation. Sorooshian (1981) discussed this problem in re- 
lation to streamflow errors. The use of regression analysis 
in such circumstances violates a fundamental assumption 
upon which the technique is predicated, but there are 
plenty of such examples of misuse to be found in the 
literature. Patterns in the data itself can cause subsequent 
patterns in the residuals from regression analysis. We iden- 
tify five basic patterns: (1) a balanced distribution of data 
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points about the regression line, (2) greater scatter about 
the line at high values, (3) greater scatter about the line at 
low values, (4) greater scatter about the line in mid-range 
values, and (5) concentration of data points at low values. 
These patterns are illustrated in Figs. 1-5. Conceivably, a 
pattern could exist with scatter at both high and low values 
while approximating the regression line in the mid-range, 
but we did not find examples. Lastly, we will briefly discuss 
some consequences of reporting only the mean values of 
experimental repetitions, rather than the entire data set, as 
shown in Figs. 6-7. 

Generic examples 

In order to address this issue generically, data sets were 
constructed that possess the identified distribution pat- 
terns. For the first four patterns, the number of data points 
and the interval between the values of the independent 
variable remained the same. In addition, the sum of the 
squared deviations of the actual dependent variable from 
the predicted dependent variable, ~(y  - yp)2, remain the 
same. Hence, the standard error of the estimate is approxi- 
mately the same for all four patterns (within rounding 
error). Subsequently, these data sets were divided into 
ranges of the independent variable for the purpose of com- 
parison and discussion. The actual values of the standard 
errors of the estimate are a function of the constructed data 
sets, but it is the relative values within and between data 
sets that are germane here. Table 1 presents the summary 
of the regression analysis results for these data sets. Note 
that for the four basic patterns, the standard errors of the 
estimate, regression coefficients, correlation coefficients, 
and coefficients of determination are very similar, although 
the patterns of data-point distribution are very different. 

Figure 1 depicts a pattern in which the data points are 
balanced about the regression line. This is the distribution 
inferred by the correlation coefficient, coefficient of deter- 
mination, and standard error of the estimate. The errors 
that might be expected using this model for prediction are 
the same throughout the range of values shown. 

Figure 2 depicts a common pattern in which the data 
points are closely associated with the regression line at low 
values, but scattered at high values. Although the descrip- 
tive statistics are about the same as for the balanced pat- 
tern, it is evident that the model predicts very well for the 
low values but poorly for the high values. The standard 
error of the estimate represents the average situation, sug- 
gesting that the model is less accurate than actually for low 
values but more accurate than actually for high values. The 
data included in this set can be partitioned into high and 
low ranges for comparison. The standard error of the 
estimate in the low range is very small while that for the 
high range is much larger. Likewise the correlation coeffi- 
cient and coefficient of determination are greater for the 
low range than for the high range. 

Figure 3 depicts a complementary pattern with scatter 
of the data at low values and close association with the 
regression line at high values. Again, the correlation coeffi- 
cient, coefficient of determination, and standard error of 
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Table 1. Statistical summary Standard Regress.  Regress.  Cor re l .  Coeff ic .  Sample 
Distribution error constant coeff coeff deter. (~o) size 

Balanced 4.133 0.414 0.987 0.974 94.8 30 
High-end scatter 4.137 0.276 0.991 0.974 94.9 30 

Low range 0.531 0.100 0.994 0.998 99.7 16 
High range 6.260 3.719 0.921 0.788 62.1 14 

Low-end scatter 4.137 0.276 0.991 0.974 94.9 30 
Low range 6.029 0.962 0.942 0.823 67.8 15 
High range 0.536 -0.033 1.000 0.998 99.8 15 

Middle scatter 4.140 0.083 0.997 0.974 94.9 30 
Middle 6.296 0.545 0.982 0.806 64.9 14 
High/low 0.534 0.031 0.999 t.000 100.0 16 

Low-end concentration 4.094 - 0.429 1.034 0.964 92.9 30 
Low range 1.032 0.263 0.965 0.965 93.1 26 

Data versus means 
Data set 4.043 1.200 0.966 0.973 94.7 30 
Means 2.342 1.200 0.966 0.993 98.7 6 

Santa Ana River 0.014 2.312 0.960 0.783 61.3 1461 
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Fig. 1. Balanced distribution of data about the regression line 
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Fig. 2. Greater scatter of data at high values than at low values 

the estimate are about the same as for the previous two 
patterns. Now, the standard error for the low range is 
several times larger than for the high range. 

Figure 4 depicts a less common scenario with a pattern 
of scatter in the middle of the data set. As before, the 
correlation coefficient, coefficient of determination, and 
standard error of the estimate are about the same as for 
the previous three patterns. This model predicts well at 
high and low values but poorly in the middle range. 

Often in geomorphic and hydrologic investigations sys- 
tematic collection of data at regular time intervals yields 
many measurements of processes operating at low rates 
and a few measurements of processes operating at substan- 
tially higher rates. This produces a pattern in the distribu- 

tion of data points as depicted in Fig. 5. For the purpose 
of comparison, this data set was constructed so that the 
standard error of the estimate is similar to those of the 
previous four cases. The standard error of the estimate for 
the entire distribution is much larger than for the concen- 
tration of data points at low values. It is evident that the 
standard error of the estimate is weighted by the large 
number of low value data points. 

Lastly, mean values are sometimes used to represent 
data collected through several replications of an experi- 
ment and the subsequent regression analyses are based 
upon these mean values alone. This practice may produce 
a distribution of data similar to that depicted in Fig. 6, 
whereas the entire data set might look something like that 
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Fig. 3. Greater scatter of data at low values than at high values 
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Fig. 5. Concentration of data at low values 
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Fig. 4. Greater scatter of data at mid-range than at high or low values 

depicted in Fig. 7. The correlation coefficient, coefficient 
of determination, and standard error of the estimate for 
the entire data set are similar to those for the previous 
five patterns. However, the standard error of the estimate 
based upon the means alone is considerably less. Thus, this 
practice of utilizing only the means tends to substantially 
underestimate the amount  of error that may be expected 
when using the model. Note also that the regression con- 
stant and coefficient remained the same, while the correla- 
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Fig. 6. Mean value of data collected through repeated experimenta- 
tion 

tion coefficient and coefficient of determination changed 
slightly. The latter statistics tended to disguise the change 
in the standard error of the estimate. 

Actual example 

A regression between stream discharge and sediment con- 
centration is frequently presented in the geomorphic and 
hydrologic literature. It is usually accepted that each vari- 
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Fig. 7. Distribution of all data collected through repeated experi- 
mentation 
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Fig. 8. Relation between discharge and sediment concentration for 
the Santa Aria River, Prado Park, California 

able requires logarithmiclo transformation. A scatter dia- 
gram of such data often resembles Fig. 5, with most of the 
data points concentrated toward lower values, represent- 
ing many measurements during small magnitude events, 
and a few data points toward higher values representing 
occasional large magnitude events. Figure 8 shows such a 
regression for mean daily discharge and sediment concen- 

tration data from the US Geological Survey gaging station 
on the Santa Aria River at Prado Park near Corona, Cali- 
fornia (R. S. Parker, US Geological Survey, personal com- 
munication, 1992). From the time series of data through 
the period 1 October, 1976 to 30 September, 1980, the 
values for every fourth day are plotted. 

First, it is evident that there is considerable scatter of 
data about the regression line. In fact, the distribution 
seems to possess features of both Figs. 3 and 5. Generally, 
the scatter appears widest for lower values and narrows 
some toward higher values. Further, it would be expected 
that the few data points at the higher values substantially 
influence, or leverage, the orientation of the regression line. 
Finally, it might be argued that, despite data transforma- 
tion, the scatter indicates a curvilinear, convex-upward, 
relation, rather than a simple logarithmic relation. These 
features affect the accuracy of the prediction that are made 
from this regression analysis. 

Commentary 

Implicit in most models is the notion that they predict 
equally well throughout the range of data from which they 
were developed. The preceding indicates that this is often 
not the situation. The correlation coefficient, coefficient of 
determination, or standard error of the estimate do not 
reveal the existence or nature of intrarange data scatter. 
This is one good reason why the inclusion of scatter dia- 
grams is of paramount importance in the presentation of 
the results from regression analyses. 

There are various reasons why patterns such as those 
shown in Figs. 2-4 may occur in data sets. Perhaps a 
measurement techniques or instrumentation was utilized 
beyond its effective range. Perhaps a geomorphic or hydro- 
logic threshold was surpassed during the recording period, 
triggering significant change within the system under in- 
vestigation. For example, at some discharge along a rating 
curve, the flow may produce sufficient shear stress at 
the channel bed and banks to cause erosion, alteration 
of channel morphology, and modification of the stage/ 
discharge relation. Weathering of bank material and satu- 
ration may contribute by reducing channel bank shear 
strength. Until a new equilibrium is attained along the 
channel reach, the relation might be expected to exhibit a 
measure of scatter. Perhaps the contribution of water and 
sediment from tributaries varies seasonally or with precipi- 
tation events of various magnitudes. 

The place or places where a strong relation seems not 
to hold are precisely the places of greatest scientific interest. 
The data points on or very near the regression line gener- 
ally confirm that which we already knew or suspected. The 
data points that depart significantly, as revealed by large 
residual values, direct our attention to the unknown or 
unsuspected. Such distributions confirm that the physical 
environment is more complicated than the linear model 
infers and perhaps a linear model itself is inappropriate. 

The options for handling data sets that contain patterns 
in the distribution of points range from relatively simple 
to quite complicated. First, as suggested earlier, we are 



obliged to provide a graphic display of the data so that 
potential users can judge for themselves whether the model 
is useful through the range of data of interest to them. It 
may be prudent to divide the data into subsets, as sug- 
gested by Diskin (1970). The relation between the indepen- 
dent and dependent variables might be linear through one 
range of values but curvilinear through another range, 
perhaps following a threshold. Possibly, one independent 
variable is sufficient to predict a dependent variable 
through one range of values but other independent vari- 
ables become important through another range. It may 
be that above or below certain ranges of values addi- 
tional geomorphic or hydrologic processes or suite of pro- 
cesses become operational. Concerning precipitation run- 
off modeling, Troutman (1985a) remarked that: "we are at 
liberty to state that the model is correctly specified only for 
large events and simply discard the predictions for small 
events because we know that the model does not work very 
well for these events . . . .  We may go even further if we can 
state that there is one set of parameters, say B1, that gives 
good predictions for small events, and another set, say Be, 
that gives good predictions for large events." The foregoing 
possibilities should encourage us to examine our measure- 
ment techniques and instrumentation to assure ourselves 
that the distributions are true reflections of reality. 

From a statistical perspective, there are tools to assist 
in dealing with problematic data sets. These include data 
transformations, robust regression, weighted least-squares 
regression (WLS), and generalized least-squares regression 
(GLS). Further information concerning the application of 
these techniques is available in Sorooshian (1981), Hoaglin 
and others (1985), Troutman (1985a, b), and Tasker and 
Stedinger (1989). 

Nevertheless, as noted by Woolhiser and Brakensiek 
(1982, p. 16), objective methods for choosing the best model 
have not yet been developed; "the final choice of the best 
model will depend upon the problem, the resources avail- 
able to the analyst, the time frame available, the input 
resources available, and a number of other implicit criteria 
like experience, and maybe even 'horse sense'." 

Discussion and conclusion 

In discussing association and indeterminacy in geomor- 
phology, Leopold and Langbein (1967) commented: 

The landscape, in other words, exhibits a variability 
which may be expected as a result of incomplete dy- 
namic determinacy. General physical laws are necessary 
but not sufficient to determine the exact shape of each 
land form. Some scatter of points on graphs showing 
interrelations between factors is expected, although the 
mean or median condition is reproducible in different 
sets of samples. 

The consequences of this indeterminacy is reflected in the 
observation of Wagenet (1988): 
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It is now obvious that existing models do not predict 
exactly the field-measured values of any property or 
process . . . .  this indicates that model builders not only 
must indicate the confidence limits of their predictions 
as a part of future model building and application exer- 
cises, they also must educate the balance of the world 
that uncertainty is an inescapable component of the 
natural systems. 

Accordingly, some dispersion of data about the regression 
line is a realistic expectation. It is incumbent upon geo- 
morphologists and hydrologists to develop strategies to 
accommodate this eventuality. The ASCE Task Commit- 
tee on Evaluation Criteria for Watershed Models (ASCE 
1990) offers two general recommendations: (1) When mod- 
el results are presented, always provide statistical criteria 
to assist in evaluating model performance; graphical plots 
should be presented together with the statistical criteria. 
(2) Attempt to keep the presentation of results simple by 
including only the minimum number of criteria necessary. 
The committee suggests that implementation of these and 
other recommendations be mandatory for publication in 
ASCE journals in the same way that the use of SI units is 
required. 

Until criteria and standards for model evaluation are 
developed and adopted, we advocate, as a minimum, rou- 
tine inclusion of scatter diagrams and the standard error 
of the estimate in addition to, if not in preference to, the 
correlation coefficient or coefficient of determination, in 
the presentation of the results from regression analyses. In 
addition, the sample size for the analysis should be ex- 
plicitly stated. Eventually, somewhat less familiar statistics, 
such as the standard error of prediction, and somewhat 
less familiar techniques, such as uncertainty and influence 
analyses, should be utilized as geomorphologists, hydrolo- 
gists, planners, and managers become more dependent 
upon models in their work. 

Acknowledgement We would like to convey our gratitude to our 
colleagues who provided thorough and thoughtful review of this 
work: R. F. Hadley, R. H. Hawkins, M. R. Karlinger, L. J. Lane, 
H. B. Osborn, and J. J. Stone. This report was enhanced by their 
expertise and diligence. 

References 

ASCE (American Society of Civil Engineers) Task Committee on 
Evaluation Criteria for Watershed Models, (1990) Summary 
report: Evaluation criteria for watershed models. Proceedings, 
watershed planning and analysis in action. NY: American Society 
of Civil Engineers. pp 386-394 

Dawdy DR and Lichty RW (1968) Methodology of hydrologic model 
building. Proceedings, use of analog and digital computers in 
hydrology, vol. 2. Tucson Arizona: International Association of 
Science Hydrology. pp 347-355. 

Diskin M H (1970) Definition and uses of the linear regression model. 
Water Resour Res 6:1668 1673 

Foster GR (1988) Development and use of models for management 
of runoff and erosion processes. Proceedings, modeling agricul- 
tural, forest, and rangeland hydrology. St. Joseph, Michigan: 
American Society of Agricultural Engineers. pp 156-165. 



128 

Gilroy E (1991) Uncertainty in estimates of suspended sediment load. 
Proceedings, fifth interagency sedimentation conference. Wash- 
ington, DC: US Government Printing Office. pp 9-17 to 9-23 

Haan CT (1988) Parametric uncertainty in hydrologic modeling. 
Proceedings, modeling agricultural, forest, and rangeland hydrol- 
ogy. St. Joseph: American Society of Agricultural Engineers. 
pp 330 346 

Hammond R and McCuUagh PS (1974) Quantitative techniques in 
geography: An introduction. Oxford: Clarendon Press. 318 pp 

Hardison CH (1971) Prediction error of regression estimates of 
streamflow characteristics at ungaged sites. Geological Survey 
Research, Chapter C. US Geological Survey Professional Paper 
750-C. pp C228-C236 

Hoaglin DC, Mosteller F and Tukey JW (1985) Exploring data 
tables, trends, and shapes. NY: John Wiley & Sons. 527 pp 

Knisel WG (1980) Erosion and sediment yield models--an overview. 
Proceedings, watershed management '80. Boise, Idaho: American 
Society of Civil Engineers. pp 141-150 

Leopold LB and Langbein WB (1967) Association and indetermi- 
nacy in geomorphology. In: The fabric of geology. Albritton, 
pp 184-192 

Mark DM and Church M (1977) On the misuse of regression in earth 
sciences. Math Geol 9: 63-75 

Osterkamp WR, McNellis JM and Jordan PR (1978) Guidelines for 
the use of structural versus regression analysis in geomorphic 
studies. Water Resources Investigations, 78-135, US Geological 
Survey. 22 pp 

Renard KG and Meyer LD (1986) The effect of erosion on productiv- 
ity: Role of mathematical models. Forum on erosion productivity 
impact estimators. US Department of Agriculture, Soil Conserva- 
tion Service, pp 4-13, 88 110 

Sorooshian S (1981) Parameter estimation of rainfall-runoff models 
with heteroscedastic streamflow errors--the noninformative data 
case. J Hydrol 52:127-138 

Tasker GD and Stedinger JR (1989) Operational GLS model for 
hydrologic regression. J Hydrol 111 : 361-375. 

Troutman BM (1985a) Errors and parameter estimation in precipita- 
tion-runoff modeling: 1. Theory. Water Resour Res 21:1195- 
1213 

Troutman BM (1985b) Errors in parameter estimation in precipita- 
tion-runoff modeling: 2. Case study. Water Resour Res 21:1214- 
1222 

Wagenet RJ (1988) Modeling soil hydrology: Perspectives, perils, and 
directions. Proceedings, modeling agricultural, forest, and range- 
land hydrology. St. Joseph, Michigan: American Society of Agri- 
cultural Engineers. pp 1-9 

Williams GP (1983) Improper use of regression equations in earth 
sciences. Geology 11 : 195-197 

Woolhiser DA and Brakensiek DL (1982) Hydrologic system synthe- 
sis. Hydrologic modeling of small watersheds, Monograph 5. 
St. Joseph, Michigan (ALSO) American Society of Agricultural 
Engineers, pp 3-16 


